
Corrosion

Introduction

- 1. Corrosion is electrochemical
 - 2. Mordern eletrochem. -2 lonics & electrodics
 - 3. Discuss will lead to thermodynamics and kinetics.

DEFINITION Extractive metallurgy in REVERSE

Basic corrosion RXNs

Take rxn of Fe with HCl

Fe + 2HCl
$$_{--}$$
 FeCl₂ + H₂(1) or Fe + 2H⁺ + 2Cl⁻ $_{--}$ Fe²⁺ + 2Cl⁻ + H₂(2)

$$2H^+ + 2e^- \longrightarrow H_2$$
(4)
which is reduction rxn?
Which is oxidation rxn?

Rxn 3, oxidation = ANODIC RXN Rxn 4, reduction= CATHODIC.

Rate of rxn3= Rate of rxn4.

NO Xs build up of electrons during corrosion.

MODEL OF CORROSION

- 1. Anodic Process
- 2. Cathodic Process
- 3. Electron movement in the metal4. Ion movement in solution

ALL AQUEOUS CORROSION INVOLVE THE 4

2 BASIC FORMS OF CORROSION

1. GENERAL OR UNIFORM

2. LOCALISED

GENERAL OR UNIFORM CORROSION

- 1. KINK OR EDGE SITES BICOM ANODES
- 2. THE REST OF THE SURFACE BICOMS CATHODE SITE

LOCALISED CORROSION

VARIOUS FACTORS DETERMINE CATHODE AND ANODE

1. SECOND PHASE MATERIAL

2. RUPTURE IN SURFACE COATING

3. GALVANIC CELL

THERMODYNAMICS OF CORROSION